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A two-parameter integral ,equation of the first kind with a difference periodic kernel, to which a wide range of periodic problems 
of the mechanics of continua with mixed boundary conditions can be reduced, is investigated. For the two main versions it is 
converted to a singular integral equation, which can be effectively solved using many well-known approximate methods. In a 
special case dosed solutiolm of the initial equation are obtained. Antiplane contact problems for an elastic plane and a cylindrical 
layer are considered. © 1998 Elsevier Science Ltd. All fights reserved. 

1. The following tWo-parameter integral equation of the first kind with a difference periodic kernel arises 
in periodic problems of the mechanics of continua and in other problems of mathematical physics [1--4] 

I 

q~(~)K[a(~- x)ld~ = ~f(x) (Ixl< l) (1.1) 
- l  

K (y ) = I k "=~_. * L(~Uk ) e iuky (y = ~t(~-x)) 
Uk 

(1.2) 

Here a and 13 are dimensionless positive parameters, where 0 < a < n and 0 < 13 < oo, the function 
f(x) is specified and such that its first derivative for I x I ~< 1 satisfies the H61der condition, and the 
function L(~) is odd, continuous and does not vanish when 0 < I ~ I < .o. Moreover, we have the following 
relations 

L(lul)=I+O(u -2) ( lu l .~) ,  L(v )= Au +O(u3)(u --)O) (1.3) 

where A is a positiw', constant. As regards the quantities Uk, tWO fundamental cases are encountered 
(henceforth denoted by 1 and 2) 

(1) u k = k - ~ , ( 2 )  u k = k  (1.4) 

By virtue of (1.3) 'we can represent the function L ( . )  in the form 

L(u ) = th Av + g(o ) 

g(lu I) = O(u -2)(Iv I---~ oo), 

Ig(o )1~ 8 (0 <Iv I< oo) 

g(o )=O(v 3) (v ~ o )  (1.5) 

where the quantity ~i is usually small in practical problems. 
Consider the following series (everywhere henceforth summation is carried out from k = 1 to 

k=**) 

Mi(y  ) = Y. thTuk s inuky (y  = ~A) (1.6) 

In cases 1 (i = 1) and 2 (i = 2) this can, correspondingly, take the form ([5], formulae 1.441(2), 1.442(2) 
and 8.146(10, 11)) 
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MI (y) = l [ c o s e c  Y -  4)" - -  

= ' ~ [  ' 2 - 4 ) " . ~ q 2  - "  ] =  M 2 (y) ctg k sin ky K(e)F 2 (u) 

Fl(u)=dnUsnu' F2(u)=Cnu ( s n u  u=K(~)Y]  

l + q  2k-I 

(q = e-~) (1.7) 

The quantity e < 1 is found from the transcendental equation 

re K( 1 ~ - ~ -  e 2 )[K(e)] -I = "/ (1.8) 

where K(e) is the complete elliptic integral of the first kind and sn u, cn u and dn u are Jacobi elliptic functions. 
We differentiate integral equation (1.1), (1.2) once with respect tox, and using relations (1.5)-(1.7) 

for cases 1 and 2 we write it in the form 

1 1 

Ix ~ q~(~)F~[Ix(~ - x)la~ = nf ' (x )  - a ~ cp(~)Gi[~t( ~ - x)]d~ (1.9) 
-1 -I 

Ix ---- ~-I  K(e)0t,  Gi(Y ) = ~,g(~uk )sinuky 

It can be shown, on the basis of the properties of g(u), that the functions Gi(y) satisfy the HOlder 
condition, when I Y I ~< 2tx. 

2. We will consider separately the cases of even versions of Eqs (1.9) (tp(x) andf(x) are even functions) 
and odd versions (~0(x) andf(x) are odd functions). 

Note that 

lVll [IX(~ - x)] - Eli [IX(~ + x)] = 2 sn ~tx cn ~ dn ~ / A 

tVll [IX(~ - x)] + FII [I.t(~ + x)] = 2 sn IX~ cn pax dn IX~ / A 

F 2 [IX(~ - x)] - F 2 [IX(~ + x)] = 2 sn pax cn pax dn IX~ / A (2.1) 

F 2 [IX(~ - x)] + F 2 [~t(~ + x)] = 2 sn la~ cn ~ dn Ixx / A 

A = sn 2 la~ - s n  2 

Using (2.1) and taking into account the fact that ~t < K(e), while the functions cnKx and dnKx decrease 
monotonically from 1 to 0 as x increases from 0 to 1 [6], we reduce (1.9) to the form 

I 
1 (p(~) cn IX~ ~ f ' ( x )  (X I {p(~)Gi[(~(~ - x)]d~ (2.2) 

Ix-I ~ sn IX~ - snlax d~ = dn pax dn gx -! 

1 1 

-I sn Ix~ - sn pax cn pax cn pax -I 

The first equation of (2.2) holds for the even versions of Eq. (1.9) for i = 1 and the odd version of Eq. 
(1.9) for i -- 2, while the second equation of (2.2) holds for the odd version of Eq. (1.9) for i = 1 and 
the even version of Eq. (1.9) for i = 2. 

Taking into account once again the fact that Ix < K(e) while the function snKx increases monotonically 
from 0 to 1 as x increases from 0 to 1 [6], we introduce the new variables 

x = sn IX~, t = sn lax, c = sn IX (2.3) 

and we introduce the following function, inverse to sn u 

=asn x asn t t dx (2.4) 
~ ' l X  x = ~ , i x  asnt = j0 ~ ' ( 1 - x 2 ) ( 1 - e 2 x  2 ) 
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(we have used the definition of the function sn u given in [15, formula 8.144(1)]). 
Using (2.3) and (2.4) we can reduce Eq. (2.2) to the form 

i W(/)('C) d'c = ~ h ( J ) ( t ) -  i~II(J)( 'QH:J)( 'C, t ) d z  ([tl~ < c) 
-c  ~ -- t -c  

(2.5) 

where j = 1 corresponds to the first of the equations in (2.2) while j = 2 corresponds to the second, 
and we have introduced the following notation 

~o(~) =WO)(x) ' if(x) = h(t)(t), q~(~) =Wt2)(x), if(x) = h(2)(t ) 
dn Ix~ dn $tx cn Ix~ cn lax 

H:,)(x ' t)=nl-l:')(,, t) [ ~ ] 
K(e) G i K----~e) (asn x -  ash t) (2.6) 

1 /~}2)(% t)=/~l) ( t ,  "t) 

It is important to note that c < 1 < l/e and the root singularities in the denominators of the 
expressions for fflLJ)('c, t) lie outside the ranges of definition and integration in (2.5). 

3. Any of the well-known approximate methods [4, 7-11] can be used to solve the singular integral 
equation of the first kind (2.5). Since they are all in some way based on exact inversion of the principal 
singular operator on the left-hand side of (2.5), for small ~ in (1.5) their efficiency will be extremely 
high for any values of the parameters a and [5. 

Taking the above properties of the functionsf(x) and Gi(y) into account, it can be proved [4] that if 
a solution of Eq. (2.5) exists for specified values of a and [3 in the class of functions for which the integral 

c 

SIw(J)('c)I p d'c (0 < p < 2) (3.1) 
--C 

converges, then this solution can be represented in general in the form 

W(/)(t) = w(J)(t)(c 2 - t 2)-Y2 (3.2) 

where the function ~'q)(t) satisfies the H61der condition when I t I ~< c. 
If the functionf(x) and, consequently, the function q~(x) in Eq. (1.1) have both even and odd parts, 

i.e. 

f (x )  = L ( x ) + L ( x ) ,  ¢(x) = ¢+(x)+¢_(x) (3.3) 

where the plus subscript denotes even parts while the minus subscript denotes odd parts, solving Eqs 
(2.5) we obtain for case 1 

cp(x) = dn l ax~  )(sn lax) + cn tax¥~ 2) (sn lax) (3.4) 

and for case 2 

cp(x) = cn l a x ~  ) (sn lax) + dn laX~<) ) (sn lax) (3.5) 

where W+0)(t) and W!~)(t) are defined as the solutions corresponding to f'+(x) and f'_(x). 
Note that the functions W+0)(t) are found from the singular integral equations (2.5) up to terms 

C (j) (c 2 - t 2 )-~ (3.6) 

where C O.) are arbitrary constants which must be defined from the requirement that the solutions (3.4) 
and (3.5) of Eq. (2.5) also satisfy the initial equation (1.1) (undifferentiated with respect to x), for 
example, at the pointx = 0. Note that the pointx = 0 was only chosen for simplicity, and one can take 
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any other point in the section Ix I ~< 1, because Eqs (1.9) ---> (2.2) ---> (2.5) differ from (1.1) solely ha the 
single operation of differentiation. 

Putting x = 0 in (1.1) and using formulae (2.4) and (2.5) from [9], which ha the notation employed 
here have the form 

E th ~ ( _ ~ )  cos(k- 1]  l+cnu  
y = l l n  l - c n u  

1 thzk l+dnu  
~'Y+Y- c°sky = 21n l_dn  u 

(3.7) 

(note that (3.7) can be obtained by integrating (1.6) and (1.7) using formula 5.135(3, 6) from [5]; in [9] 
they are given incorrectly--instead of th there should be tg), after some algebra, taking (2.6) and (3.7) 
into account, we obtain the following relation for determining C 0) 

i (i). v+ txl[P/(~)+ Ri(~)ld~ = n~f(0) (3.8) 
- - C  

where 

1 , 1 + ~/1-'c 2 
PI(X) = ~ m  ,------.-, P2 ('~) = PI (e¢) 

2~/1- X 2 1 - i l l  -X 2 

1 

k,(,=  -4i-sV' 

Qi(Y) Y.g(~Uk) cosulcY " G = ( O i ( Y )  = -  i ( Y ) )  Uk 

(3.9) 

In a number of problems the function f(x) ha (1.1), for specified a and 13, is only defined up to the 
linear part Co + crr. To obtain Co and cl we need additional conditions, which are usually the following 

9 (+1) = 0 (3.10) 

4. If g(~) -- 0 in (1.5), Eq. (2.5) degenerates into a classical singular integral equation of the first 
kind with a Cauchy kernel, which can be solved in closed form (see, for example, [4]). Then, we have 
for the even version of case 1 

dnlax [ P - l a  S X(~)f~(~)cn la~ d~] (4.1) 
q~+(x) = nX(x) _~ w(~, x) 

X(x)=4c2-sn2gx, W(~, x)=snla~-snlax 
The additional relation (3.8), which now serves to determine the constant P in (4.1), takes the form 

I q~+(~)cnl.t~, l+Y(~)_r~=21tf+(O), V(x) 41-sn21ax (4.2) 
-1 

For condition (3.10) we have the following equation for the even version of case 1 

1 f+(~)cnl~ d~ (4.3) ~0+(x)= ~tdnlaXX(x)J~ - I  X(~)W(~, x) 

Relation (4.2) remains true here, while the additional conditions (3.10) for determining Co take the form 
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I 
P + P S  f ~ ( ~ ) s n ~ c n ~  d~ = 0  (4.4) 

For the odd version of case 2 we must put P = 0 and replacef~.(~) byf'__(~) in (4.1). Under conditions 
(3.10), for the odd velrsion of case 2, we must replacefi.(~) byf'__(g) in (4.3), while the additional conditions 
(3.10) for determining cl take the form 

• c I f -  (~) n ~t~ d~ = 0 (4.5) I 
- I  

For the even version of case 2 we have 

q)+(x) = ha(x) _ x) 
(4.6) 

and the additional relation (3.8) takes the form 

t ~+(~)dnl.t~. I+Z(~) ,~ "' 
J In 7 - ' - - ~ t  ~ ~ aq = lrgf+ (0), Z(x)=~/l-e2sn2p..x (4.7) 

Z(~) -1 

For conditions (3.10) we have the following equation for the even version of case 2 

I f+(~)dn ~x) d~ (4.8) ~0+(x)= ~tcnlax X(x) S X(~)W(~, 
- I  

Relation (4.7) remains valid here, while the additional conditions (3.10) take the form 

i 
P+l,t J f+(~)snl~dnlx~ d~ = 0 (4.9) 

_, 

For the odd versic)n of case 1 we must put P = 0 and replace f~ (~) byf'__(~) in (4.6). Under conditions 
(3.10) for the odd versions of ease 1 we must replacef~(~) byf'__(~) in (4.8), and the additional conditions 
(3.10) take the form 

J') f-'(~)dnlX~X(~) d~ = 0 (4.10) 
- I  

Note that when f+(~) = f+ = const, taking into account relations (3.152(7)) and (4.317(10)) from 
[5], for the even versions of cases 1 and 2 we have the following relations from formulae (4.1), (4.2), 
(4.6) and (4.7) [12] 

q)+(x)= )~f+dnllx , No_ 2f÷K(c) 
K(3/l-c2)X(x) K(~/l-c 2) (4.11) 

[dr+ cn, p.x _ 2f+ K(ec) 

where No is an integral characteristic, defined by the formula 

I 

N o = J 9+(~)d~ (4.12) 
- I  

5. We will consider the antiplane problem of the deformation of an elastic layer of thickness h, damped 
along the base, by a periodic system of similar strip punches. Suppose the period is equal to 2b, the 
width of a single punch is 2a(a < b) and there is complete adhesion between the punches and the upper 
surface of the layer. 

If the punches are shifted along the generatrices by tangential forces T, directed alternately on different 



816 V. M. Aleksandrov 

Table 1 

~ = 2  4 s 

it/9 0.369 0,267 0,174 
2~/9 0.490 0.326 0,197 
rj3 0.599 0.372 0,213 

41r./9 0.701 0.410 0.225 

sides, the problem can be reduced to case 1 of integral equation (1.1), (1.2), and if the punches are 
shifted on one side, the problem can be reduced to case 2 of  integral equation (1.1), (1.2) [1, 4]. Then, 
in the equation we have 

x(ax) 
( p + ( x ) = 7 ,  L ( v ) = t h v ,  ot=-~--, 13= f ( x ) - f +  (5.1) 

gh 

b '  a ~ r  O 

where x(rl) is the contact shear stress, G is the shear modulus, and e is the value of the displacement 
of each punch along the generatrix due to the force T applied to it. 

The solution of this problem for cases 1 and 2 will obviously be given by formula (4.11), in which e 
is defined from (1.8) with ~, = 13, and No = T/(Ga).  

Consider the antiplane problem of the deformation of an elastic tube, clamped along the external 
boundary, by a cylindrical strip punch. Suppose the external and internal radii of the tube are a and b, 
respectively, there is complete adhesion between the punch and the inner surface of the tube, and the 
angle of contact of the punch with the surface of the tube is 2o~. The punch is moved along its generatrix 
by a tangential force T. 

This problem reduces to cases 2 of integral equation (1.1), (1.2) [13]. Here  in the equation we have 

tp+(x)= x(o'x----~), L ( v ) = t h u ,  or=ix o, 13=1n b ,  f ( x ) = - f + =  e (5.2) 
G a Otoa 

The solution of the problem is given by the two successive formulae (4.11) in which e is found from 
(1.8) with ~/= 13, while No = T/(Go~oa). Table 1 gives values of the resistance coefficient V = T/(Ge)  for 
a number of values of o~ and 13. 
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